Comienzo con una breve introduccion sobre el acero con mis palabras.
El acero es una aleación de hierro y carbono. Para que esta aleacion sea considerada un acero el porcentaje de carbono no debe superar el 2,1%. En el caso de que el porcentaje de carbono supere estos valores se formara un compuesto quimico denominado Fundicion Blanca o Fundicion Gris, dependiendo del porcentaje que contengan. Un Ejemplo de fundicion Gris son los blocks de los motores, sumamente duros y fragiles.
Volviendo al acero, el carbono no es el unico aleante pero si el mas importante y es el que esta en mayor presencia. El fin de los aleantes es mejorar la resistencia entonces se puede definir al acero como hierro mas un aleante con el fin de incrementar su resistencia.
Como dije antes el principal aleante del hierro es el carbono. por que? Esto se debe a que el hierro presenta estructura cristalina, es decir, todos los atomos en su interior se colocan ordenadamente siguiendo un modelo que se repite en las tres direcciones del espacio. Si se trata de un compuesto que no sigue un ordenamiento estariamos hablando de un solido amorfo
En el caso del hierro su estructura cristalina es cubica centrada en el cuerpo.
imagen de una estructura cristalina, la primera es cubica centrada en el cuerpo (como la del hierro) y la segunda es cubica simple
El radio atomico de los atomos del hierro son aproximadamente el doble de tamaño de los atomos de carbono por eso es que es que se usa el carbono como principal aleante. Como se hace? se funde el hierro a 1538°C y como si fuera una sopa se agrega el porcentaje de carbono y este cuando se enfria se mete en los espacios vacios de la estructura cristalina logrando asi incrementar su resistencia.
Historia
Aunque no se tienen datos precisos de la fecha en la que se descubrió la técnica de fundir mineral de hierro para producir un metal susceptible de ser utilizado, los primeros utensilios de este metal descubiertos por los arqueólogos en Egipto datan del año 3000 a. C. También se sabe que antes de esa época se empleaban adornos de hierro.
El acero era conocido en la antigüedad, y quizá pudo haber sido producido por el método de boomery —fundición de hierro y sus óxidos en una chimenea de piedra u otros materiales naturales resistentes al calor, y en el cual se sopla aire— para que su producto, una masa porosa de hierro (bloom) contuviese carbón.
Algunos de los primeros aceros provienen del Este de África, fechados cerca de 1400 a. C.
En el siglo IV a. C. armas como la falcata fueron producidas en la península Ibérica.
La China antigua bajo la dinastía Han, entre el 202 a. C. y el 220 d. C., creó acero al derretir hierro forjado junto con hierro fundido, obteniendo así el mejor producto de carbón intermedio, el acero, en torno al siglo I a. C.
Junto con sus métodos originales de forjar acero, los chinos también adoptaron los métodos de producción para la creación de acero wootz, una idea importada de India a China hacia el siglo V.
El acero wootz fue producido en India y en Sri Lanka desde aproximadamente el año 300 a. C. Este temprano método utilizaba un horno de viento, soplado por los monzones.
También conocido como acero Damasco, el acero wootz es famoso por su durabilidad y capacidad de mantener un filo. Originalmente fue creado de un número diferente de materiales, incluyendo trazas de otros elementos en concentraciones menores a 1000 partes por millón o 0,1% de la composición de la roca. Era esencialmente una complicada aleación con hierro como su principal componente. Estudios recientes han sugerido que en su estructura se incluían nanotubos de carbono, lo que quizá explique algunas de sus cualidades legendarias; aunque teniendo en cuenta la tecnología disponible en ese momento fueron probablemente producidos más por casualidad que por diseño.
El acero crucible (Crucible steel) —basado en distintas técnicas de producir aleaciones de acero empleando calor lento y enfriando hierro puro y carbón— fue producido en Merv entre el siglo IX y el siglo X.
En China, bajo la dinastía Song del siglo XI, hay evidencia de la producción de acero empleando dos técnicas: una de un método "berganesco" que producía un acero de calidad inferior por no ser homogéneo, y un precursor del moderno método Bessemer el cual utilizaba una descarbonización a través de repetidos forjados bajo abruptos enfriamientos (cold blast).
El hierro para uso industrial fue descubierto hacia el año 1500 a. C., en Medzamor, cerca de Ereván, capital de Armenia y del monte Ararat.14 La tecnología del hierro se mantuvo mucho tiempo en secreto, difundiéndose extensamente hacia el año 1200 a. C.
Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero auténtico.
Las características conferidas por la templabilidad no consta que fueran conocidas hasta la Edad Media, y hasta el año 1740 no se produjo lo que hoy día denominamos acero.
Los métodos antiguos para la fabricación del acero consistían en obtener hierro dulce en el horno, con carbón vegetal y tiro de aire. Una posterior expulsión de las escorias por martilleo y carburación del hierro dulce para cementarlo. Luego se perfeccionó la cementación fundiendo el acero cementado en crisoles de arcilla y en Sheffield (Inglaterra) se obtuvieron, a partir de 1740, aceros de crisol.
Fue Benjamin Huntsman el que desarrolló un procedimiento para fundir hierro forjado con carbono, obteniendo de esta forma el primer acero conocido.
En 1856, Sir Henry Bessemer, hizo posible la fabricación de acero en grandes cantidades, pero su procedimiento ha caído en desuso, porque solo podía utilizar hierro que contuviese fósforo y azufre en pequeñas proporciones.
En 1857, Sir William Siemens ideó otro procedimiento de fabricación industrial del acero, que en la actualidad ha caído en desuso, el procedimiento Martin Siemens, por descarburación de la fundición de hierro dulce y óxido de hierro, calentando con aceite, gas de coque, o una mezcla da gas de alto horno y de coque. Siemens había experimentado en 1878 con la electricidad para calentar los hornos de acero, pero fue el metalúrgico francés Paul Héroult —coinventor del método moderno para fundir aluminio— quien inició en 1902 la producción comercial del acero en hornos eléctricos a arco.
El método de Héroult consiste en introducir en el horno chatarra de acero de composición conocida haciendo saltar un arco eléctrico entre la chatarra y unos grandes electrodos de carbono situados en el techo del horno.
En 1948 se inventa el proceso del oxígeno básico L-D. Tras la segunda guerra mundial se iniciaron experimentos en varios países con oxígeno puro en lugar de aire para los procesos de refinado del acero. El éxito se logró en Austria en 1948, cuando una fábrica de acero situada cerca de la ciudad de Linz, Donawitz desarrolló el proceso del oxígeno básico o L-D.
En 1950 se inventa el proceso de colada continua que se usa cuando se requiere producir perfiles laminados de acero de sección constante y en grandes cantidades. El proceso consiste en colocar un molde con la forma que se requiere debajo de un crisol, el que con una válvula puede ir dosificando material fundido al molde. Por gravedad el material fundido pasa por el molde, el que está enfriado por un sistema de agua, al pasar el material fundido por el molde frío se convierte en pastoso y adquiere la forma del molde. Posteriormente el material es conformado con una serie de rodillos que al mismo tiempo lo arrastran hacia la parte exterior del sistema. Una vez conformado el material con la forma necesaria y con la longitud adecuada el material se corta y almacena.
En la actualidad se utilizan algunos metales y metaloides en forma de ferroaleaciones, que, unidos al acero, le proporcionan excelentes cualidades de dureza y resistencia.
Actualmente, el proceso de fabricación del acero, se completa mediante la llamada Metalurgia Secundaria. En esta etapa, se otorgan al acero líquido las propiedades químicas, temperatura, contenido de gases, nivel de inclusiones e impurezas deseados. La unidad más común de Metalurgia Secundaria es el Horno Cuchara. El acero aquí producido está listo para ser posteriormente colado, en forma convencional o en colada continua.
El uso intensivo que tiene y ha tenido el acero para la construcción de estructuras metálicas ha conocido grandes éxitos y rotundos fracasos que al menos han permitido el avance de la ciencia de materiales. Así, el 7 de noviembre de 1940 el mundo asistió al colapso del puente Tacoma Narrows al entrar en resonancia con el viento. Ya durante los primeros años de la Revolución Industrial se produjeron roturas prematuras de ejes de ferrocarril que llevaron a William Rankine a postular la fatiga de materiales y durante la Segunda Guerra Mundial se produjeron algunos hundimientos imprevistos de los cargueros estadounidenses Liberty al fragilizarse el acero por el mero descenso de la temperatura, problema inicialmente achacado a las soldaduras.
En muchas regiones del mundo, el acero es de gran importancia para la dinámica de la población, industria y comercio.
Histórico horno Bessemer
Grabado que muestra el trabajo en una fragua en la Edad Media
Propiedades del acero y caracteristicas mecanicas
Aunque es difícil establecer las propiedades físicas y mecánicas del acero debido a que estas varían con los ajustes en su composición y los diversos tratamientos térmicos, químicos o mecánicos, con los que pueden conseguirse aceros con combinaciones de características adecuadas para infinidad de aplicaciones, se pueden citar algunas propiedades genéricas:
Su densidad media es de 7850 kg/m³.
En función de la temperatura el acero se puede contraer, dilatar o fundir.
El punto de fusión del acero depende del tipo de aleación y los porcentajes de elementos aleantes. El de su componente principal, el hierro es de 1538 °C en estado puro (sin alear), sin embargo el acero presenta frecuentemente temperaturas de fusión de alrededor de 1375 °C, y en general la tempera necesaria para la fusión aumenta a medida que se funde (excepto las aleaciones eutécticas que funden de golpe). Por otra parte el acero rápido funde a 1650 °C.
Su punto de ebullición es de alrededor de 3000 °C.
Es un material muy tenaz, especialmente en alguna de las aleaciones usadas para fabricar herramientas.
Relativamente dúctil. Con él se obtienen hilos delgados llamados alambres.
Es maleable. Se pueden obtener láminas delgadas llamadas hojalata. La hojalata es una lamina de acero, de entre 0,5 y 0,12 mm de espesor, recubierta, generalmente de forma electrolítica, por estaño.
Permite una buena mecanización en máquinas herramientas antes de recibir un tratamiento térmico.
Algunas composiciones y formas del acero mantienen mayor memoria, y se deforman al sobrepasar su límite elástico.
La dureza de los aceros varía entre la del hierro y la que se puede lograr mediante su aleación u otros procedimientos térmicos o químicos entre los cuales quizá el más conocido sea el templado del acero, aplicable a aceros con alto contenido en carbono, que permite, cuando es superficial, conservar un núcleo tenaz en la pieza que evite fracturas frágiles. Aceros típicos con un alto grado de dureza superficial son los que se emplean en las herramientas de mecanizado, denominados aceros rápidos que contienen cantidades significativas de cromo, wolframio, molibdeno y vanadio. Los ensayos tecnológicos para medir la dureza son Brinell, Vickers y Rockwell, entre otros.
Se puede soldar con facilidad.
La corrosión es la mayor desventaja de los aceros ya que el hierro se oxida con suma facilidad incrementando su volumen y provocando grietas superficiales que posibilitan el progreso de la oxidación hasta que se consume la pieza por completo. Tradicionalmente los aceros se han venido protegiendo mediante tratamientos superficiales diversos. Si bien existen aleaciones con resistencia a la corrosión mejorada como los aceros de construcción «corten» aptos para intemperie (en ciertos ambientes) o los aceros inoxidables.
Posee una alta conductividad eléctrica. Aunque depende de su composición es aproximadamente de19 3 · 106 S/m. En las líneas aéreas de alta tensión se utilizan con frecuencia conductores de aluminio con alma de acero proporcionando éste último la resistencia mecánica necesaria para incrementar los vanos entre la torres y optimizar el coste de la instalación.
Se utiliza para la fabricación de imanes permanentes artificiales, ya que una pieza de acero imantada no pierde su imantación si no se la calienta hasta cierta temperatura. La magnetización artificial se hace por contacto, inducción o mediante procedimientos eléctricos. En lo que respecta al acero inoxidable, al acero inoxidable ferrítico sí se le pega el imán, pero al acero inoxidable austenítico no se le pega el imán ya que la fase del hierro conocida como austenita no es atraída por los imanes. Los aceros inoxidables contienen principalmente níquel y cromo en porcentajes del orden del 10% además de algunos aleantes en menor proporción.
Un aumento de la temperatura en un elemento de acero provoca un aumento en la longitud del mismo. Este aumento en la longitud puede valorarse por la expresión: δL = α δ t° L, siendo a el coeficiente de dilatación, que para el acero vale aproximadamente 1,2 · 10−5 (es decir α = 0,000012). Si existe libertad de dilatación no se plantean grandes problemas subsidiarios, pero si esta dilatación está impedida en mayor o menor grado por el resto de los componentes de la estructura, aparecen esfuerzos complementarios que hay que tener en cuenta.El acero se dilata y se contrae según un coeficiente de dilatación similar al coeficiente de dilatación del hormigón, por lo que resulta muy útil su uso simultáneo en la construcción, formando un material compuesto que se denomina hormigón armado.20 El acero da una falsa sensación de seguridad al ser incombustible, pero sus propiedades mecánicas fundamentales se ven gravemente afectadas por las altas temperaturas que pueden alcanzar los perfiles en el transcurso de un incendio.
Formación del acero. Diagrama hierro-carbono (Fe-C)
diagrama de equilibrio hierro carbono
En el diagrama de equilibro, o de fases, Fe-C se representan las transformaciones que sufren los aceros al carbono con la temperatura, admitiendo que el calentamiento (o enfriamiento) de la mezcla se realiza muy lentamente de modo que los procesos de difusión (homogeneización) tienen tiempo para completarse. Dicho diagrama se obtiene experimentalmente identificando los puntos críticos —temperaturas a las que se producen las sucesivas transformaciones— por métodos diversos.
Microconstituyentes:
El hierro puro presenta tres estados alotrópicos a medida que se incrementa la temperatura desde la ambiente, es decir, cambia de estructura cristalina a medida que aumenta la temperatura:
Hasta los 911 °C, el hierro ordinario, cristaliza en el sistema cúbico centrado en el cuerpo (BCC) y recibe la denominación de hierro α o ferrita. Es un material dúctil y maleable responsable de la buena forjabilidad de las aleaciones con bajo contenido en carbono y es ferromagnético hasta los 770 °C (temperatura de Curie a la que pierde dicha cualidad). La ferrita puede disolver muy pequeñas cantidades de carbono.
Entre 911 y 1400 °C cristaliza en el sistema cúbico centrado en las caras (FCC) y recibe la denominación de hierro γ o austenita. Dada su mayor compacidad la austenita se deforma con mayor facilidad y es paramagnética.
Entre 1400 y 1538 °C cristaliza de nuevo en el sistema cúbico centrado en el cuerpo y recibe la denominación de hierro δ que es en esencia el mismo hierro alfa pero con parámetro de red mayor por efecto de la temperatura.
A mayor temperatura el hierro se encuentra en estado líquido.
Si se añade carbono al hierro, sus átomos podrían situarse simplemente en los instersticios de la red cristalina de éste último; sin embargo en los aceros aparece combinado formando carburo de hierro (Fe3C), es decir, un compuesto químico definido y que recibe la denominación de cementita de modo que los aceros al carbono están constituidas realmente por ferrita y cementita.
estructura cristalina centrada en el cuerpo
estructura cristalina centrada en las caras
Transformación de la austenita:
El diagrama de fases Fe-C muestra dos composiciones singulares:
Un eutéctico (composición para la cual el punto de fusión es mínimo) que se denomina ledeburita y contiene un 4,3% de carbono (64,5 % de cementita). La ledeburita aparece entre los constituyentes de la aleación cuando el contenido en carbono supera el 2% (región del diagrama no mostrada) y es la responsable de la mala forjabilidad de la aleación marcando la frontera entre los aceros con menos del 2% de C (forjables) y las fundiciones con porcentajes de carbono superiores (no forjables y fabricadas por moldeo). De este modo se observa que por encima de la temperatura crítica A3 los aceros están constituidos sólo por austenita, una solución sólida de carbono en hierro γ y su microestructura en condiciones de enfriamiento lento dependerá por tanto de las transformaciones que sufra ésta.
Un eutectoide en la zona de los aceros, equivalente al eutéctico pero en estado sólido, donde la temperatura de transformación de la austenita es mínima. El eutectoide contiene un 0,77 %C (13,5% de cementita) y se denomina perlita. Está constituido por capas alternas de ferrita y cementita, siendo sus propiedades mecánicas intermedias entre las de la ferrita y la cementita.
La existencia del eutectoide permite distinguir dos tipos de aleaciones de acero:
Aceros hipoeutectoides (< 0,77% C). Al enfriarse por debajo de la temperatura crítica A3 comienza a precipitar la ferrita entre los granos (cristales) de austenita y al alcanzar la temperatura crítica A1 la austenita restante se transforma en perlita. Se obtiene por tanto a temperatura ambiente una estructura de cristales de perlita embebidos en una matriz de ferrita.
Aceros hipereutectoides (>0,77% C). Al enfriarse por debajo de la temperatura crítica se precipita el carburo de hierro resultando a temperatura ambiente cristales de perlita embebidos en una matriz de cementita.
Otros microconstituyentes:
Las microestructuras básicas descritas (perlíticas) son las obtenidas enfriando lentamente aceros al carbono, sin embargo modificando las condiciones de enfriamiento (base de los tratamientos térmicos) es posible obtener estructuras cristalinas diferentes:
La martensita es el constituyente típico de los aceros templados y se obtiene de forma casi instantánea al enfriar rápidamente la austenita. Es una solución sobresaturada de carbono en hierro alfa con tendencia, cuanto mayor es el carbono, a la sustitución de la estructura cúbica centrada en el cuerpo por tetragonal centrada en el cuerpo. Tras la cementita (y los carburos de otros metales) es el constituyente más duro de los aceros.
Velocidades intermedias de enfriamiento dan lugar a la bainita, estructura similar a la perlita formada por agujas de ferrita y cementita pero de mayor ductilidad y resistencia que aquélla.
También se puede obtener austenita por enfriamiento rápido de aleaciones con elementos gammágenos (que favorecen la estabilidad del hierro γ) como el níquel y el manganeso, tal es el caso por ejemplo de los aceros inoxidables austeníticos.
Antaño se identificaron también la sorbita y la troostita que han resultado ser en realidad perlitas de muy pequeña distancia interlaminar por lo que dichas denominaciones han caído en desuso.
diagrama Hierro Carbono zona de aceros
Otros elementos en el acero (otros aleantes e impurezas)
Elementos aleantes del acero y mejoras obtenidas con la aleación:
Aunque la composición química de cada fabricante de aceros es casi secreta, certificando a sus clientes solo la resistencia y dureza de los aceros que producen, sí se conocen los compuestos agregados y sus porcentajes admisibles.
Aluminio: se emplea como elemento de aleación en los aceros de nitruracion, que suele tener 1% aproximadamente de aluminio. Como desoxidante se suele emplear frecuentemente en la fabricación de muchos aceros. Todos los aceros aleados en calidad contienen aluminio en porcentajes pequeñísimos, variables generalmente desde 0,001 a 0,008%. También se utiliza como elemento desoxidante.
Boro: en muy pequeñas cantidades (del 0,001 al 0,0015%) logra aumentar la capacidad de endurecimiento cuando el acero está totalmente desoxidado, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro y mejorando la templabilidad. Es usado en aceros de baja aleación en aplicaciones como cuchillas de arado y alambres de alta ductilidad y dureza superficial. Utilizado también como trampa de nitrógeno, especialmente en aceros para trefilación, para obtener valores de N menores a 80 ppm.
Cobalto: muy endurecedor. Disminuye la templabilidad. Mejora la dureza en caliente. El cobalto es un elemento poco habitual en los aceros.Se usa en los aceros rápidos para herramientas, aumenta la dureza de la herramienta en caliente. Se utiliza para aceros refractarios. Aumenta las propiedades magnéticas de los aceros.
Cromo: es uno de los elementos especiales más empleados para la fabricación de aceros aleados, usándose indistintamente en los aceros de construcción, en los de herramientas, en los inoxidables y los de resistencia en caliente. Se emplea en cantidades diversas desde 0,30% a 30%, según los casos y sirve para aumentar la dureza y la resistencia a la tracción de los aceros, mejora la templabilidad, impide las deformaciones en el temple, aumenta la resistencia al desgaste, la inoxidabilidad (con concentraciones superiores al 12%), etc. Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, proporciona a los aceros características de inoxidables y refractarios; también se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.
Estaño: es el elemento que se utiliza para recubrir láminas muy delgadas de acero que conforman la hojalata.
Manganeso: aparece prácticamente en todos los aceros, debido, principalmente, a que se añade como elemento de adición para neutralizar la perniciosa influencia del azufre y del oxigeno, que siempre suelen contener los aceros cuando se encuentran en estado líquido en los hornos durante los procesos de fabricación. El manganeso actúa también como desoxidante y evita, en parte, que en la solidificación del acero que se desprendan gases que den lugar a porosidades perjudiciales en el material.Si los aceros no tuvieran manganeso, no se podrían laminar ni forjar, porque el azufre que suele encontrarse en mayor o menor cantidad en los aceros, formarían sulfuros de hierro, que son cuerpos de muy bajo punto de fusión (981º aprox.) que a las temperaturas de trabajo en caliente (forja o laminación) funden, y al encontrarse contorneando los granos de acero crean zonas de debilidad y las piezas y barras se abren en esas operaciones de transformación. Los aceros ordinarios y los aceros aleados en los que el manganeso no es elemento fundamental, suelen contener generalmente porcentajes de manganeso variables de 0,30 a 0,80%.
Molibdeno: es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad. Los aceros inoxidables austeníticos contienen molibdeno para mejorar la resistencia a la corrosión.
Nitrógeno: se agrega a algunos aceros para promover la formación de austenita.
Níquel: una de las mayores ventajas que reporta el empleo del níquel, es evitar el crecimiento del grano en los tratamientos térmicos, lo que sirve para producir en ellos gran tenacidad. El níquel además hace descender los puntos críticos y por ello los tratamientos pueden hacerse a temperaturas ligeramente más bajas que la que corresponde a los aceros ordinarios. Experimentalmente se observa que con los aceros aleados con níquel se obtiene para una misma dureza, un límite de elasticidad ligeramente más elevado y mayores alargamientos y resistencias que con los aceros al carbono o de baja aleación. En la actualidad se ha restringido mucho su empleo, pero sigue siendo un elemento de aleación indiscutible para los aceros de construcción empleados en la fabricación de piezas para máquinas y motores de gran responsabilidad, se destacan sobre todo en los aceros cromo-níquel y cromo-níquel-molibdeno.El níquel es un elemento de extraordinaria importancia en la fabricación de aceros inoxidables y resistentes a altas temperaturas, en los que además de cromo se emplean porcentajes de níquel variables de 8 a 20%. Es el principal formador de austenita, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.
Plomo: el plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje oscila entre 0,15% y 0,30% debiendo limitarse el contenido de carbono a valores inferiores al 0,5% debido a que dificulta el templado y disminuye la tenacidad en caliente.se añade a algunos aceros para mejorar mucho la maquinabilidad.
Silicio: aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.
Titanio: se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura.
Tungsteno: también conocido como wolframio. Forma con el hierro carburos muy complejos estables y durísimos, soportando bien altas temperaturas. En porcentajes del 14 al 18 %, proporciona aceros rápidos con los que es posible triplicar la velocidad de corte de loa aceros al carbono para herramientas.
Vanadio: posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.
Zinc: es elemento clave para producir chapa de acero galvanizado.
Impurezas en el acero:
Se denomina impurezas a todos los elementos indeseables en la composición de los aceros. Se encuentran en los aceros y también en las fundiciones como consecuencia de que están presentes en los minerales o los combustibles. Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación. En los casos en los que eliminarlas resulte imposible o sea demasiado costoso, se admite su presencia en cantidades mínimas.
Azufre: límite máximo aproximado: 0,04%. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.
Se controla la presencia de sulfuro mediante el agregado de manganeso. El manganeso tiene mayor afinidad por el azufre que el hierro por lo que en lugar de FeS se forma MnS que tiene alto punto de fusión y buenas propiedades plásticas. El contenido de Mn debe ser aproximadamente cinco veces la concentración de S para que se produzca la reacción.
El resultado final, una vez eliminados los gases causantes, es una fundición menos porosa, y por lo tanto de mayor calidad.
Aunque se considera un elemento perjudicial, su presencia es positiva para mejorar la maquinabilidad en los procesos de mecanizado. Cuando el porcentaje de azufre es alto puede causar poros en la soldadura.
Fósforo: límite máximo aproximado: 0,04%. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductilidad, como también por formar FeP (fosfuro de hierro). El fosfuro de hierro, junto con la austenita y la cementita, forma un eutéctico ternario denominado esteadita, el que es sumamente frágil y posee punto de fusión relativamente bajo, por lo cual aparece en bordes de grano, transmitiéndole al material su fragilidad.
Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad.
Proceso de produccion de acero
Se denomina siderurgia a la técnica del tratamiento del mineral de hierro para obtener diferentes tipos de éste o de sus aleaciones. El proceso de transformación del mineral de hierro comienza desde su extracción en las minas. El hierro se encuentra presente en la naturaleza en forma de óxidos, hidróxidos, carbonatos, silicatos y sulfuros. Los más utilizados por la siderurgia son los óxidos, hidróxidos y carbonatos. Los procesos básicos de transformación son los siguientes:
Óxidos -> hematita (Fe2O3) y la magnetita (Fe304)
Hidróxidos -> Limonita
Carbonatos -> Siderita o carbonato de hierro (FeCO3)
Estos minerales se encuentran combinados en rocas, las cuales contienen elementos indeseados denominados gangas. Parte de la ganga puede ser separada del mineral de hierro antes de su envío a la siderurgia, existiendo principalmente dos métodos de separación:
Imantación: consiste en hacer pasar las rocas por un cilindro imantado de modo que aquellas que contengan mineral de hierro se adhieran al cilindro y caigan separadas de las otras rocas, que precipitan en un sector aparte. El inconveniente de este proceso reside en que la mayoría de las reservas de minerales de hierro se encuentran en forma de hematita, la cual no es magnética.
Separación por densidad: se sumergen todas las rocas en agua, la cual tiene una densidad intermedia entre la ganga y el mineral de hierro. El inconveniente de este método es que el mineral se humedece siendo esto perjudicial en el proceso siderúrgico.
Una vez realizada la separación, el mineral de hierro es llevado a la planta siderúrgica donde será procesado para convertirlo primeramente en arrabio y posteriormente en acero.
El proceso de produccion se divide en dos fases. Primero el mineral de hierro es reducido o fundido con coque y piedra caliza, produciendo hierro fundido que es moldeado como arrabio o conducido a la siguiente fase como hierro fundido. La segunda fase, la de acería, tiene por objetivo reducir el alto contenido de carbono introducido al fundir el mineral y eliminar las impurezas tales como azufre y fósforo, al mismo tiempo que algunos elementos como manganeso, níquel, cromo o vanadio son añadidos en forma de ferro-aleaciones para producir el tipo de acero demandado.
En las instalaciones de colada y laminación se convierte el acero bruto fundido en lingotes o en laminados; desbastes cuadrados (gangas) o planos (flog) y posteriormente en perfiles o chapas, laminadas en caliente o en frío. Más tarde se ensucia el material y se devuelve el pez al agua.
En principio, son tres los tipos de instalaciones dedicadas a producir piezas de acero fundidas muy grandes o laminados de acero:
Procesos en plantas integrales
Una planta integral tiene todas las instalaciones necesarias para la producción de acero en diferentes formatos.
Hornos de coque: obtener del carbón coque y gas
Hornos altos: convertir el mineral en hierro fundido
Acería: conversión del hierro fundido o el arrabio en acero
Moldeado: producir grandes lingotes (tochos o grandes piezas de fundición de acero)
Trenes de laminación desbastadores: reducir el tamaño de los lingotes produciendo bloms y slabs
Trenes de laminación de acabado: estructuras y chapas en caliente
Trenes de laminación en frío: chapas y flejes
Las materias primas para una planta integral son mineral de hierro, caliza y coque. Estos materiales son cargados en capas sucesivas y continuas en un alto horno donde la combustión del carbón ayudada por soplado de aire y la presencia de caliza funde el hierro contenido en el mineral, que se transforma en hierro líquido con un alto contenido en carbono.
A intervalos, el hierro líquido acumulado en el alto horno es transformado en lingotes de arrabio o llevado líquido directamente en contenedores refractarios a las acerías. Históricamente el proceso desarrollado por Henry Bessemer ha sido la estrella en la producción económica de acero, pero actualmente ha sido superado en eficacia por los procesos con soplado de oxígeno, especialmente los procesos conocidos como Acerías LD.
El acero fundido puede seguir dos caminos: la colada continua o la colada clásica. En la colada continua el acero fundido es colado en grandes bloques de acero conocidos como tochos. Durante el proceso de colada continua puede mejorarse la calidad del acero mediante adiciones como, por ejemplo, aluminio, para que las impurezas “floten” y salgan al final de la colada pudiéndose cortar el final del último lingote que contiene las impurezas. La colada clásica pasa por una fase intermedia que vierte el acero líquido en lingoteras cuadradas o rectangulares (petacas) según sea el acero se destine a producir perfiles o chapas. Estos lingotes deben ser recalentados en hornos antes de ser laminados en trenes desbastadores para obtener bloques cuadrados (bloms) para laminar perfiles o planos rectangulares (slabs) para laminar chapas planas o en bobinas pesadas.
Debido al coste de energía y a los esfuerzos estructurales asociados con el calentamiento y coladas de un alto horno, estas instalaciones primarias deben operar en campañas de producción continua de varios años de duración. Incluso durante periodos de caída de la demanda de acero no es posible dejar que un alto horno se enfríe, aun cuando son posibles ciertos ajustes de la producción.
Las siderúrgicas integrales son rentables con una capacidad de producción superior a los 2.000.000 de toneladas anuales y sus productos finales son, generalmente, grandes secciones estructurales, chapa pesada, redondos pesados, rieles de ferrocarril y, en algunos casos, palanquillas y tubería pesada.
Un grave inconveniente ambiental asociado a las siderúrgicas integrales es la contaminación producida por sus hornos de coque, elemento esencial para la reducción del mineral de hierro en el alto horno.
Por otra parte, con el fin de reducir costes de producción las plantas integrales pueden tener instalaciones complementarias características de las acerías especializadas: hornos eléctricos, coladas continuas, trenes de laminación comerciales o laminación en frío.
La capacidad mundial de producción de acero en plantas integrales está cerca de la demanda global, así la competencia entre productores hace que sólo sean viables los más eficaces. Sin embargo, debido al alto nivel de empleo de estas instalaciones, los gobiernos a menudo las ayudan financieramente antes de correr el riesgo de enfrentarse a miles de parados. Estas medidas llevan, internacionalmente, a acusaciones de prácticas comerciales incorrectas (dumping) y a conflictos entre países.
Procesos en acerías especializadas
Esta planta es productora secundaria de aceros comerciales o plantas de producción de aceros especiales. Generalmente obtienen el hierro del proceso de chatarra de acero, especialmente de automóviles, y de subproductos como sinterizados o pellets de hierro (DRI). Estos últimos son de mayor coste y menor rentabilidad que la chatarra de acero por lo que su empleo se trata siempre de reducir a cuando sea estrictamente necesario para lograr el tipo de producto a conseguir por razones técnicas. Una acería especializada debe tener un horno eléctrico y “cucharas” o hornos al vacío (convertidores) para controlar la composición química del acero. El acero líquido pasa a lingoteras ligeras o a coladas continuas para dar forma sólida al acero fundido. También son necesarios hornos para recalentar los lingotes y poder laminarlos.
Originalmente estas acerías fueron adoptadas para la producción de grandes piezas fundidas (cigüeñas, grandes ejes, cilindros de motores náuticos, etc.) que posteriormente se mecanizan, y para productos laminados estructurales ligeros, tales como hierros redondos de hormigonar, vigas, angulares, tubería, rieles ligeros, etc. A partir de los años 1980 el éxito en el moldeado directo de barras en colada continua ha hecho productiva esta modalidad. Actualmente estas plantas tienden a reducir su tamaño y especializarse. Con frecuencia, con el fin de tener ventajas en los menores costes laborales, se empiezan a construir acerías especializadas en áreas que no tienen otras plantas de proceso de aceros, orientándose a la fabricación de piezas para transportes, construcción, estructuras metálicas, maquinaria, etc.
Las capacidades de estas plantas pueden alcanzar alrededor del millón de toneladas anuales, siendo sus dimensiones más corrientes en aceros comerciales o de bajas aleaciones del rango 200.000 a 400.000 toneladas anuales. Las plantas más antiguas y las de producción de aceros con aleaciones especiales para herramientas y similares pueden tener capacidades del orden de 50.000 toneladas anuales o menores.
Dadas sus características técnicas, los hornos eléctricos pueden arrancarse o parar con cierta facilidad lo que les permite trabajar 24 horas al día con alta demanda o cortar la producción cuando la demanda cae.
Laminadoras
Estas últimas solo tienen trenes de laminación, ( Tren de alambron ) de perfiles comerciales o chapa fría. Además las láminas contienen un bajo porcentaje de carbono.
Algunas imagenes
Tratamientos del acero
Tratamientos superficiales
Debido a la facilidad que tiene el acero para oxidarse cuando entra en contacto con la atmósfera o con el agua, es necesario y conveniente proteger la superficie de los componentes de acero para protegerles de la oxidación y corrosión. Muchos tratamientos superficiales están muy relacionados con aspectos embellecedores y decorativos de los metales.
Los tratamientos superficiales más usados son los siguientes:
Cincado: tratamiento superficial antioxidante por proceso electrolítico al que se somete a diferentes componentes metálicos.
Cromado: recubrimiento superficial para proteger de la oxidación y embellecer.
Galvanizado: tratamiento superficial que se da a la chapa de acero.
Niquelado: baño de níquel con el que se protege un metal de la oxidación.
Pavonado: tratamiento superficial que se da a piezas pequeñas de acero, como la tornillería.
Pintura: usado especialmente en estructuras, automóviles, barcos, etc.
Tratamientos térmicos
Templado o Temple:
El temple es un tratamiento térmico al que se somete al acero, concretamente a piezas o masas metálicas ya conformadas en el mecanizado, para aumentar su dureza, resistencia a esfuerzos y tenacidad. El proceso se lleva a cabo calentando el acero a una temperatura aproximada de 915°C en el cual la ferrita se convierte en austenita, después la masa metálica es enfriada por lo general rápidamente(salvo algunos caso donde el enfriamiento es "lento" aceros autotemplables), sumergiéndola o rociándola en agua, en aceite , aire positivo o en otros fluidos o sales. Después del temple siempre se suele hacer un revenido.
Es uno de los principales tratamientos térmicos que se realizan y lo que hace es disminuir y afinar el tamaño del grano de la alineación de acero correspondiente. Se pretende la obtención de una estructura totalmente martensítica.
Se basa en calentar la pieza a una temperatura comprendida ente 700 ºC y 1000 ºC, para luego enfriarla rápidamente controlando el tiempo de calentamiento y de enfriamiento.
Hay dos tipos de temples, uno de ellos es el que se templa la totalidad de la pieza, incluyendo su núcleo, y otro es el que solo se templa su superficie externa, dejando el núcleo menos duro, para que sea más flexible. A este segundo temple se le llama "temple superficial" y existen dos tipos de éste según la manera de calentar: "a la llama" (en desuso) y el temple por inducción.
También la dureza superficial se obtiene por medio del cementado, sin endurecer el núcleo, aplicado en engranajes y otros elementos que requieran similares características.
Características generales del temple:
Es el tratamiento térmico más importante que se realiza
Hace el acero más duro y resistente pero más frágil
La temperatura de calentamiento puede variar de acuerdo a las características de la pieza y resistencia que se desea obtener.
El enfriamiento es rápido
Si el temple es muy enérgico las piezas se pueden agrietar.
El revenido:
El revenido es un tratamiento térmico que sigue al de templado del acero. Tiene como fin reducir las tensiones internas de la pieza originadas por el temple o por deformación en frío. Mejora las características mecánicas reduciendo la fragilidad, disminuyendo ligeramente la dureza, esto será tanto más acusado cuanto más elevada sea la temperatura de revenido.
El revenido se hace en tres fases:
Calentamiento a una temperatura inferior a la crítica.
Mantenimiento de la temperatura, para igualarla en toda la pieza.
Enfriamiento, a velocidad variable. No es importante, pero no debe ser excesivamente rápido.
El recocido:
El recocido es el tratamiento térmico que, en general, tiene como finalidad una temperatura que permita obtener plenamente la fase estable a falta de un enfriamiento lo suficientemente lento como para que se desarrollen todas las reacciones completas.
Se emplea para ablandar metales y ganar tenacidad, generalmente aceros.
Se obtienen aceros más mecanizables.
Evita la acritud del material.
La temperatura de calentamiento está entre 600 y 700 °C.
El enfriamiento es lento.
Normalizado:
El normalizado es un tratamiento térmico que se emplea para dar al acero una estructura y unas características tecnológicas que se consideran el estado natural o inicial del material que fue sometido a trabajos de forja, laminación o tratamientos defectuosos. Se hace como preparación de la pieza para el temple.
El procedimiento consiste en calentar la pieza entre 30 y 50 grados centígrados por encima de la temperatura crítica superior, tanto para aceros hipereutectoides, como para aceros hipoeutectoides, y mantener esa temperatura el tiempo suficiente para conseguir la transformación completa en austenita. A continuación se deja enfriar en aire tranquilo, obteniéndose una estructura uniforme.
Con esto se consigue una estructura perlítica con el grano más fino y más uniforme que la estructura previa al tratamiento, consiguiendo un acero más tenaz. Es lo que llamamos perlita fina (observar un diagrama TTT, de la fase austenita y posteriormente realizar una isoterma a una temperatura determinada).
Ensayos mecánicos del acero
Los ensayos pueden ser destructivos o no destructivos.
Los ensayos no destructivos son los siguientes:
Ensayo microscópico y rugosidad superficial.
Ensayos por ultrasonidos.
Ensayos por líquidos penetrantes.
Ensayos por partículas magnéticas.
Los ensayos destructivos son los siguientes:
Ensayo de tracción con probeta normalizada.
Voy a hablar un poco de este ensayo ya que es uno de los mas importantes, sirve para determinas 4 de las 5 propiedades mecanicas de los materias, ductilidad, tenacidad, rigidez y resistencia, el faltante es dureza que se lleva a cabo en un durometro.
El ensayo de tracción de un material consiste en someter a una probeta normalizada realizada con dicho material a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la probeta.
En el ensayo se mide la deformación (alargamiento) de la probeta entre dos puntos fijos de la misma a medida que se incrementa la carga aplicada, y se representa gráficamente en función de la tensión (carga aplicada dividida por la sección de la probeta). En general, la curva tensión-deformación así obtenida presenta cuatro zonas diferenciadas:
Deformaciones elásticas: en esta zona las deformaciones se reparten a lo largo de la probeta, son de pequeña magnitud y, si se retirara la carga aplicada, la probeta recuperaría su forma inicial. El coeficiente de proporcionalidad entre la tensión y la deformación se denomina módulo de elasticidad o de Young y es característico del material. Así, todos los aceros tienen el mismo módulo de elasticidad aunque sus resistencias puedan ser muy diferentes. La tensión más elevada que se alcanza en esta región se denomina límite de fluencia y es el que marca la aparición de este fenómeno. Pueden existir dos zonas de deformación elástica, la primera recta y la segunda curva, siendo el límite de proporcionalidad el valor de la tensión que marca la transición entre ambas. Generalmente, este último valor carece de interés práctico y se define entonces un límite elástico (convencional o práctico) como aquél para el que se produce un alargamiento prefijado de antemano (0,2%, 0,1%, etc.). Se obtiene trazando una recta paralela al tramo proporcional (recto) con una deformación inicial igual a la convencional.
Fluencia o cedencia. Es la deformación brusca de la probeta sin incremento de la carga aplicada. El fenómeno de fluencia se da cuando las impurezas o los elementos de aleación bloquean las dislocaciones de la red cristalina impidiendo su deslizamiento, mecanismo mediante el cual el material se deforma plásticamente. Alcanzado el límite de fluencia se logra liberar las dislocaciones produciéndose la deformación bruscamente. La deformación en este caso también se distribuye uniformemente a lo largo de la probeta pero concentrándose en las zonas en las que se ha logrado liberar las dislocaciones (bandas de Luders). No todos los materiales presentan este fenómeno, en cuyo caso la transición entre la deformación elástica y plástica del material no se aprecia de forma clara.
Deformaciones plásticas: si se retira la carga aplicada en dicha zona, la probeta recupera sólo parcialmente su forma quedando deformada permanentemente. Las deformaciones en esta región son más acusadas que en la zona elástica.
Estricción. Llegado un punto del ensayo, las deformaciones se concentran en la parte central de la probeta apreciándose una acusada reducción de la sección de la probeta, momento a partir del cual las deformaciones continuarán acumulándose hasta la rotura de la probeta por ese zona.La estricción es la responsable del descenso de la curva tensión-deformación; realmente las tensiones no disminuyen hasta la rotura, sucede que lo que se representa es el cociente de la fuerza aplicada (creciente) entre la sección inicial y cuando se produce la estricción la sección disminuye, efecto que no se tiene en cuenta en la representación gráfica. Los materiales frágiles no sufren estricción ni deformaciones plásticas significativas, rompiéndose la probeta de forma brusca. Terminado el ensayo se determina la carga de rotura, carga última o resistencia a la tracción: la máxima resistida por la probeta dividida por su sección inicial, el alargamiento en (%) y la estricción en la zona de la rotura.
imagenes de la probeta a ensayar, maquina para el ensayo y de curva tension-deformacion
Ensayo de flexión.
Ensayo de torsión.
Ensayo de plegado o doblado (guiado, semiguiado y libre)
Ensayo de fatiga.
Ensayo de dureza (Brinell, Rockwell, Vickers). Mediante durómetros.
durometros
Produccion, Consumo y Reciclaje de Acero
Evolución del consumo mundial de acero (2005)
El consumo mundial de productos de acero acabados en 2005 registró un aumento de aproximadamente un 6% y supera actualmente los mil millones de toneladas. La evolución del consumo aparente resulta sumamente dispar entre las principales regiones geográficas. El consumo aparente, excluida China, experimentó una caída del 1,0% debida, fundamentalmente, a la notable disminución observada en Europa (EU25) y Norteamérica. China, por el contrario, registró un incremento del consumo aparente del 23% y representa en la actualidad prácticamente un 32% de la demanda mundial de acero. En Europa (UE25) y Norteamérica, tras un año 2004 marcado por un significativo aumento de los stocks motivado por las previsiones de incremento de precios, el ejercicio 2005 se caracterizó por un fenómeno de reducción de stocks, registrándose la siguiente evolución: -6% en Europa (UE25), -7% en Norteamérica, 0,0% en Sudamérica, +5% en CEI, +5% en Asia (excluida China), +3% en Oriente Medio.
Producción mundial de acero (2005)
La producción mundial de acero bruto en 2005 ascendió a 1.129,4 millones de toneladas, lo que supone un incremento del 5,9% con respecto a 2004. Esa evolución resultó dispar en las diferentes regiones geográficas. El aumento registrado se debe fundamentalmente a las empresas siderúrgicas chinas, cuya producción se incrementó en un 24,6%, situándose en 349,4 millones de toneladas, lo que representa el 31% de la producción mundial, frente al 26,3% en 2004. Se observó asimismo un incremento, aunque más moderado, en India (+16,7%). Asia produce actualmente la mitad del acero mundial, a pesar de que la contribución japonesa se ha mantenido estable. Paralelamente, el volumen de producción de las empresas siderúrgicas europeas y norteamericanas se redujo en un 3,6% y un 5,3% respectivamente.
Reciclaje del acero
Todos los metales, y el acero entre ellos, tienen una propiedad que desde el punto de vista medioambiental es muy buena: pueden ser reciclados una vez que su uso inicial ha llegado a su término.
De esta manera todas las máquinas, estructuras, barcos, automóviles, trenes, etc., se desguazan al final de su vida útil y se separan los diferentes materiales que los componen, originando unos desechos seleccionados que se conocen con el nombre de chatarra.
Esta chatarra se prensa y se hacen grandes compactos en las zonas de desguace que se envían nuevamente a las acerías, donde se consiguen de nuevo nuevos productos siderúrgicos, tanto aceros como fundiciones. Se estima que la chatarra reciclada cubre el 40% de las necesidades mundiales de acero (cifra de 2006).
El acero se puede obtener a partir de mineral (ciclo integral) en instalaciones que disponen de Altos Hornos o partiendo de chatarras férricas (ciclo electrosiderúrgico) en Hornos Eléctricos.
Las chatarras seleccionadas contenidas en la cesta de carga se introducen en el horno eléctrico por su parte superior, en unión de agentes reactivos y escorificantes, desplazando la bóveda giratoria del mismo. Se funde la chatarra de una o varias cargas por medio de corriente eléctrica hasta completar la capacidad del horno. Este acero es el que va a constituir una colada. Se analiza el baño fundido y se procede a un primer afino para eliminar impurezas, haciendo un primer ajuste de la composición química por adición de ferroaleaciones que contienen los elementos necesarios.
EL acero líquido obtenido se vuelca en un recipiente revestido de material refractario, denominado cuchara de colada. Este recipiente hace de cuba de un segundo horno de afino denominado (horno cuchara) en el que se termina de purificar el acero, se ajusta su composición química y se calienta a la temperatura adecuada.
La cuchara se lleva sobre una máquina de colada continua, en cuya artesa receptora vierte (cuela) el acero fundido por el orificio del fondo o buza. La artesa lo distribuye en varias líneas, cada una con su molde o lingotera, en donde se enfría de forma controlada para formar las palanquillas, que son los semiproductos de sección rectangular que se someterán a las operaciones de forja y conformación subsiguientes.
En todo el proceso de reciclado hay que respetar las normas sobre prevención de riesgos laborales y las de carácter medioambiental. Al ser muy alto el consumo de electricidad, el funcionamiento del horno de fundir debe programarse hacerse cuando la demanda de electricidad es menor. Por otro lado, en la entrada de los camiones que transportan la chatarra a las industrias de reciclaje tiene que haber detectores de radioactividad, así como en diferentes fases del proceso.
El comercio de chatarra es un buen negocio que suministra materiales de segunda mano para su reutilización o reciclaje. La chatarra es un recurso importante, sobre todo porque recorta el gasto de materias primas y el de energía empleado en procesos como la fabricación del acero.
En el año 2006, debido al gran auge y gran demanda en el proceso constructivo en edificación, el precio del acero se está incrementando considerablemente, suponiendo el coste de la chatarra de acero un 20% del precio de mercado.
Como precaución general en el manejo de chatarra hay que tomar las medidas oportunas para no sufrir cortes que provoquen heridas, ya que es altamente infecciosa, produciendo la infección del tétanos, por eso el personal que maneja chatarra debe estar siempre vacunado contra esta infección y así no sufrir los daños provocados por los cortes que pueda sufrir. Cualquier persona que sufra un corte con un elemento de acero, debe acudir a un Centro Médico para que le vacunen contra el tétanos.
acero y aluminio reciclado